

Supervised Learning Terminology and Concepts

DL4DS Spring 2024

Lecture Outline

- Homeworks and Jupyter Notebooks plan
- Supervised Learning
- More on Projects

Supervised Learning Classification and Regression Applications

Regression

• Univariate regression problem (one output, real value)

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Supervised learning overview

- Supervised learning model = mapping from one or more inputs to one or more outputs
- Model is a family of equations → "inductive bias"
- Computing the outputs from the inputs → inference
- Model also includes parameters
- Parameters affect outcome of equation
- Training a model = finding parameters that predict outputs "well" from inputs for training and evaluation datasets of input/output pairs

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Notation:

• Input:

 \mathbf{X}

• Output:

y

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}]$$

Variables always Roman letters

Normal lower case = scalar Bold lower case = vector Capital Bold = matrix

Functions always square brackets

Normal lower case = returns scalar Bold lower case = returns vector Capital Bold = returns matrix

Notation example:

• Input:

$$\mathbf{x} = \begin{bmatrix} age \\ mileage \end{bmatrix}$$

Vector: Structured or tabular data

• Output:

$$y = [price]$$

Scalar output

• Model:

$$y = f[\mathbf{x}]$$

Scalar output function (with vector input)

Model

• Parameters:

• Model:

$$\mathbf{y} = \mathbf{f}[\mathbf{x}, oldsymbol{\phi}]$$

Data Set and Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf x_i, \mathbf y_i\}_{i=1}^I$$

Data Set and Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}$$

Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
model train data

Dataset and Loss function

Training dataset of I pairs of input/output examples:

$$\{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}$$

Loss function or cost function measures how bad model is:

$$L\left[\boldsymbol{\phi}, \mathbf{f}[\mathbf{x}, \boldsymbol{\phi}], \{\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^{I}\right]$$
model train data

or for short:

 $\phi\left[oldsymbol{\phi}
ight]$ Returns a scalar that is smaller when model maps inputs to outputs better

Training

• Loss function:

$$L\left[oldsymbol{\phi}
ight]$$
 Returns

Returns a scalar that is smaller when model maps inputs to outputs better

• Find the parameters that minimize the loss:

$$\hat{\boldsymbol{\phi}} = \operatorname*{argmin}_{\boldsymbol{\phi}} \left[\operatorname{L} \left[\boldsymbol{\phi} \right] \right]$$

Testing (and evaluating)

- To test the model, run on a separate test dataset of input / output pairs
- See how well it generalizes to new data

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix}$$
 — y-offset — slope

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

$$oldsymbol{\phi} = egin{bmatrix} \phi_0 \ \phi_1 \end{bmatrix} ullet ext{ iny-offset} \ ext{ iny-slope}$$

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

• Model:

$$y = f[x, \phi]$$
$$= \phi_0 + \phi_1 x$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Loss function:

$$L[\phi] = \sum_{i=1}^{I} (f[x_i, \phi] - y_i)^2$$
$$= \sum_{i=1}^{I} (\phi_0 + \phi_1 x_i - y_i)^2$$

Possible objections

- But you can fit the line model in closed form!
 - Yes but we won't be able to do this for more complex models
- But we could exhaustively try every slope and intercept combo!
 - Yes but we won't be able to do this when there are a million parameters

- Test with different set of paired input/output data (Test Set)
 - Measure performance
 - Degree to which Loss is same as training = generalization
- Might not generalize well because
 - Model too simple: underfitting
 - Model too complex
 - fits to statistical peculiarities of data
 - this is known as overfitting

Supervised learning

- Overview
- Notation
 - Model
 - Loss function
 - Training
 - Testing
- 1D Linear regression example
 - Model
 - Loss function
 - Training
 - Testing
- Where are we going?

Where are we going? Next lectures...

- Shallow neural networks (a more flexible model)
- Deep neural networks (even more flexible with fewer parameters)
- Loss functions (where did least squares come from?)
- How to train neural networks (gradient descent and variants)
- How to measure performance of neural networks (generalization)

Course Project -- https://dl4ds.github.io/sp2024/project/

- Work in individually or in teams of 2-3
- Can be application, algorithmic, theoretical or combination thereof
- Some example ideas on the website, but propose new ones!
- Project proposal due Feb. 16
- Deliverables:
 - Code in GitHub repo
 - Report/paper
 - 3-4 minute video
- More info later, but feel free to brainstorm with me now

Possible Projects

- Class Al Tutor
- Teacher's Al Assistant
- CDS Curriculum Al Assistant
- CDS Building Recycling Advisor
- Media Bias Detection
- Herbaria Foundation Model
- Modern Implementation of Classic Models
- Develop a new dataset for a new class of problem and an initial model
- ...your ideas here...

Look at Kaggle, Conferences, Workshops, Datasets....

Feedback?

